Left Distributivity
Given a Set $S$ and two binary operators $*$ and $+$ on $S$. If $\forall x, y, z \in S, x * (y + z) = (x * y) + (x * z)$, then $*$ is left-distributive.
Given a Set $S$ and two binary operators $*$ and $+$ on $S$. If $\forall x, y, z \in S, x * (y + z) = (x * y) + (x * z)$, then $*$ is left-distributive.