Associativity
A binary operator, $\cdot: A \times A \to A$ is associative if and only if $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c, \in A.$
A binary operator, $\cdot: A \times A \to A$ is associative if and only if $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c, \in A.$